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The Integrated Moving Average (IMA) model of time

series, and the analysis of intervention effects based on

it, assume random shocks which are normally distributed.

To determine the robustness of the analysis to violations

of this assumption, empirical sampling methods were employed.

Samples were generated from three populations; normal,

moderately non-normal, and severely non-normal. The samples

were combined with values of other quantities in the model,

the resulting "observations" subjected to time-series analy-

sis, and the effect on empirical significance levels noted.

The analysis of interventions based on the IMA model

was robust to violations of the normality assumption. .
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THE EFFECT OF NON-NORMAL DISTRIBUTIONS
ON THE INTEGRATED MOVING AVERAGy MODEL

OF TIME-SERIES ANALYSIS

Judith Doerann-George2
Indiana University

Model building and testing have performed an important

role in the development of theories, and through theories in

the advancement of knowledge. A serious consideration in the

use of models in research is the degree to which it is possible

. in the research situation to conform to the assumptions inherent

in the model. If it can be determined that the outcome of

statistical tests based on the model are not altered by depar-

ture from the conditions or assumptions, the model is said to

be robust.

The Integrated Moving Average (IMA) model, and statistical

methods for estimating intervention effects developed by Box

and Tiao (1965), promise to be useful in time-series analysis.

They are, howeyer, based on assumptions of normality an,1 homo-
.

geneity of variance of the random shocks affecting the system.

This study was designed to determine the robustness of the IMA

model and related analysis to non-normality of the shocks.

1
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In the time-series quasi-experiment, observations of a

variable are made at equally spaced time intervals. It is

desired to make inferences regarding an alteration in the

series associated with the introduction of an event or treat-

ment at some point in the series. The alteration may be either

a change in level or in drift of the series. The Integrated

Moving Average model and related analytic procedures can be

used in the situation described, because they provide a statis-

tical test for changes in level and in drift of the series,

while allowing for the nonindependence of the observations.

Furthermore, the IMA model allows the variable observed to be

the property of a system imbedded in 'white noise' or subject

to random shocks. These shocks may be absorbed in the system

over time.

The expression in the IMA model for the ni pretreatment

observations (zt) is:
t-

z
t
= L + yp(t-1) + p + y.E

1
a. + a

t
.31 (1)

For the n
2
observations following intervention theexpres-

sion is:

z
t

= L +

where p =

t-1

yp(t-1) + p + yA(t-n1-1) + ti + 6 + y.E
1

a. + at (2)
3= J

the drift characteristic of the series

L = the initial level of the series when observations begin

A = the change in drift of the series, due to intervention

6 = the change
vention

in level of the series, also due to inter-

= the interdependence parameter, equivalent to 1-
proportion of shocks carried over to the following

observation
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A given observation or data value is considered to be a

linear function of the four parameters A, L, and (5, and a value

of at, a random normal variable with variance a
2 (Tiao in

Glass and Maguire, 1968). In order to determine the parameter

values from the observations zt of a system, the zt's are first

transformed for a given y:

Y=
1

zi

Yt = zt - zt-1
+ (1-y)yt-1

for t = 2, , nl+n2

The vector of y's which results can be expressed by the linear

model

y = XS + e (5)

where X is the design matrix, fr the vector of parameters (ii, A,

L, S) and e the vector of values of the random normal variable

a
t
with variance aa2.

Least-squares estimates of the four parameters are obtained,

and (based on the assumption of normality of a
t

and sampling

theory) the following distributional statements can be made:
A A *

t ti P t ti L L

tti

Sa C11

A - A t

Sa 17
A
6 - 6

Sa
IfETY Sa 1/617"

-where Cjj is the jth diagonal element of the matrix (XTX)
-1

.

The t-ratios (estimate/standard error) can be used to

determine the probability of intervention effects, in the cases

of cS and A. T-ratios are also calculated for L and p.

e)
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Procedures

To test the robustness of the IMA model under violations

of the normality assumption, it waL,.. necessary to obtain data

that were non-normal and to subject such data to time-series

analysis. The origin of the data is not important to the

problem, so long as they conform to the characteristics needed

(Hammersley and Handscomb, 1964). Consequently, simulation

techniques were used to generate the random shock values at.

Three populations of random shocks were selected which

had desired degrees of skewness and kurtosis; one normal, one

moderately non-normal, and one severely non-normal. The

binomial n, p parameters which characterize each of the three

populations were determined by a recently developed technique

(Martin and Hendrix, 1974). Each of the three n, p pairs thus

determined was used with values from a random number generator

to create 1000 samples of 60 each. The samples were standard-

ized to mean zero and standard deviation one, before use in

the time series. (Such standardization does not affect the value

of skewness or kurtosis). The actual skewness and kurtosis

of these samples compared well with the skewness and kurtosis

as calculated from binomial values n and p. See Table 1.
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TABLE 1: Comparison of Desired and Actual Measures of Skew-
ness andand Kurtosis (132)

I

Population

II III

Binomial Input
Value n

P

100

.5

40

.9870

40

.9958

Desired

(31

0
2

= (q-p)
2

+ 3

0.0000

2.9800

1.8484

4.7984

5.8775

8.8275

npq

= 1-6pq
npq

Actual

M. =
3

(31

(32

n
E

i=1

m 2 ,;

= -3

, n = 1,

0.0000

2.9881

2,

1.7641

4.8082

60,000

5.6020

8.6928

4.

____.
M
2
'

= 14 4M422
2

(X.- ) 1
1
n

Four values of y, the interdependence parameter in time

series, and three values of 6, p, and 6, other time-series

parameters, were selected and varied systematically for each

simulation run. The values of y were 0.1, 0.5, 1.0, and 1.5,

which adequately represent the range of y values found in

practice. For the other parameters, values of 0.5, 0.0, and
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-0.5 were selected to provide tests of the null condition and

to make it unnecessary to use supply distributions with posi-

tive and negative skewness. A few trial runs indicated to the

investigator that 0.5 would be a reasonable magnitude of treat-

ment effect. L, the initial level of the time series, was

maintained at zero throughout the study.

Combinations of the four values of y, and three each of

6, p, and A yielded 108 parameter sets, and a different para-

meter set was used in each simulation run. A computer simula-

4 tion run consisted of the generation of random shock samples

from one population which were then combined with a set of

time-series parameter values to create 'observations' of a

time series. Each of 1000 sets of 60 observations were

subjected to time-series analysis and the resulting t's

!allied. The entire process was repeated with samples from

the remaining two supply distributions.

More specifically, the 60 values in a sample from one

of the three populations were combined with input values. of

y, 5, p, and A (L=0) according to the linear model of time

series (equations 1 and to yield 30 pre-intervention and

30 post-intervention data values or observations. The data

set was analyzed, using a program based on one developed by

Glass and Maguire (1968). From a data set and the true, or

input, value of y the following were computed: least-squares

estimates of p, A, L and 6, the standard error of each

estimate, and four values of t obtained by dividing each
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estimate by its standard error. Consequently, each of the

108 simulation runs produced 12,000 t's, 1000 for each of four

parameters and the three populations.

The 12 distributions of 1000 t's each were compared to

the t-distribution with n-4=56 df to determine whether actual

or empirical significance levels differed from nominal (.10,

.05, and .01) ones. This was done by scanning the 1000 t's

for a single supply distribution and a single parameter, and

tallying the number of t's more extreme than the critical

ta/2
values of ±1.671, ±2.000, and ±2.600. The entire process

of data generation, parameter estimation, and tally of the

12 distributions of 1000 t's was executed with all of the

108 input parameter sets.

Results and Conclusion

Each of the 108 simulation runs yielded 36 empirical

significance levels, one for each combination of the three

populations, four estimated parameters, and three nominal

significance levels. To condense those results, the redults

from similar input conditions we-,e combined.

The four values of y were used for 27 runs each. The

-.5, 0.0, and +.5 values of p, A, and .5 were employed in the

27 possible combinations, once with each y value. L, the

initial series level, was maintained at zero for all 108 runs.

Consequently, with each y value, results were obtained

for 27 runs in which L was zero; there were nine when p:-.5,

nine when p=0.0, and nine for which p=+.5. Similarily, there

r.
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were nine runs each in which the input values of A and of 6

were -.5, 0.0, and +.5. To summarize overall trends, the

empirical significance levels for a single parameter which

were obtained with the same input value of that parameter were

averaged, separately for each y value.

When the null hypothesis was true for all or some of the

parameters 11, A, L and 6 (see Table 2, Appendix), the propor-

tion of t-ratios more extreme than to /2 (the critical t for

two-tailed nominal alpha level a) was close to the nominal

level of significance for all supply distributions, especially

when y = .01. At the higher values of y, 0.5, 1.0, and 1.5,

non-normality of the random shock supply distribution did seem

to broaden the extreme tails of the t-distributions; at a = .01,

probability of Type I error usually increased with increasing

non-normality of population, especially for L and 6. This

effect was slight for 11, the series drift. Actual significance

levels associated with zero input values of A, the change in

drift, were not affected in any systematic way by non-normality

of population.

When p, A, and/or (S input values were ±.5 (see Tables 3

and 4, Appendix), nominal and actual significance levels were

very similar when y = .01, which indicates that non-zero drift

(p) or treatment effects (A and 6) would be difficult to detect

regardless of population. At higher levels of y, non-zero

input values showed an effect in increased empirical signifi-

cance level obtained; this is particularly marked for p,

moderate for A, and least severe for S. (See Figure 1 for

10
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y = 1.0 and input values = -.5.) There was a tendency for

actual significance levels to increase with non-normality of

supply distribution. However observable trends were not

consistent for all three parameters across y levels or at all

a levels. In all cases, any variation apparently associated

with non-normality of supply distribution was small compared

to the change in significance level due to non-zero input

values of p, A, and 6.

. 9

.8

.7

. 6

. 5

. 4

. 3

.2

. 1

0

R----
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0

*me.

- A

...."

.10 . 0 5 . X01
a

FIGURE 1: Mean Actual Significance Levels for Parameters
p, A, and 6 by Alpha Level for Three Populations when
y = 1.0 and Input Values = -.5
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It can be concluded that the analysis of time series

based on the IMA model is robust to violations of the assump-

tion of normality of the random shock population, particularly

at alpha levels of .10 and .05. There does appear to be a

slight increase in probabLliuy of Type I error with non-

normality of shocks at a = .01. However, when the null

hypothesis was not true, the probability of rejection of the

hypothesis was not affected consistently by population type,

and differences in rejection probability due to population

type were negligible in comparison to actual significance level

magnitude due to treatment effect (A,6) or series drift (p).

Variations apparently due to population type were not

consistent enough nor of sufficient magnitude to warrant

concern regarding random shock normality when setting alpha

levels. In an experimental situation, of course, it would

not be known whether the null hypothesis regarding A and 6

is true, since those are possible treatment effects to IDe

detected by the analysis. If there is sufficient data on

the system being studied, the probable values of L and p

could be known, since those are characteristic of a given

series. Consequently, it seems justifiAhle to recommend that

possible non-normality of random shocks not be of 'primary

concern to a researcher who is choosing alpha levels for a

particular experiment employing the IMA model in time-series

analysis.

12
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APPENDIX 12

TABLE 2: Empirical Significance Levels for Four
Parameters, Averaged Over All Cases of Zero Input Value
of Each Parameter

Y Parameter
No. of
Runs

Averaged
Popu-
lation

a= .10 a= .05 a= .01

.01 p I .093 .050 .011

II .099 .048 .008

III .099 .049 .009

.01 A 9 I .096 .050 .009

II .098 .046 .009

III .102. .048 .008

.01 L 27 I .095 .050 .011

II .099 .049 .009

III .098 .051 .011

.01 6 9 I .100 .053 .010

II .095 .050 .009

III .100 .049 .009

.5 p 9 I .100 .051 .010

II .102. .052 .013

III .102 .050 .020

.5 A 9 .096 .052 .010

II .099 .052 .009

III .099 .044 .007

.5 L 27 I .101 .049 .010

II .077 .049 . .018
III .092 .061 .032

.5 6 9 I .103 .050 .008

II .072 .046 .017

III .091 .062 .032

1.0 p 9 I .105 .052 .009

II .104 .053 .013

III .114 .065 .017

1.0 A 9 I .100 .053 .010

II .103 .054 .009

III .101 .049 .008

1.0 27 I .103 .052 .014

II .081 .057 .021

III .132 .091 .036

1.0 9 I .105 .052 .010

II .089 .067 .024

III .131 .092 .038

14
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TABLE 2 (Continued)

No. of
y Parameter Runs

Averaged
Popu-
lation

a = .10 a = .05 a = .01

1.5 p 9 I .105 .054 .010

II .109 .053 .012

III .110 .059 .018

1.5 A 9 I .099 .052 .010

II .103 .054 .009

III .096 .045 .007

1.5 L 27 I .103 .051 .010

II .096 .057 .019

III .125 .081 .029

1.5 6 9 I .101 .050 .009

II .096 .055 .018

III .126 .079 .029



TABLE 3: Empirical Significance Levels for Three
Parameters, Averaged Over All Cases of -.5 Input Value
of Each Parameter

Parameter
No. of
Runs

Averaged
Popu-
lation

a = .10 a = .05 a = .01

.01

.01

.01

A

6

9

9

I

II

III

.108 .054 .012

. 108 .053 .009

.109 .057 .013

.101 .049 .008

. 106 .049 .012

.105 .050 .009

. 105 .050 .009

. 102 .050 .010

. 106 .054 .009

A

6

9

9

9

.828 .733 .490

.843 .838 .473

.872 .766 .471

.549 .429 .218

. 571. .443 .227

. 583 .461 .249

.156 .086 .023

.148 .100 .043

.152 .115 .055

1.0

1.0

1.0

A

9

9

9

.843 .754 .518

..871 .772 .512

.903 .795 .512

.594 .462 .235

.599 .467 .250

.617 .492 .274

.142 .081 .020

. .115 .090 .049

.157 .140 .079

1.5

1.5

1.5

A

6

9

9

.857 .774 .541

. 877 .788 .527

.915 .822 .538

.597 .465 .243

.609 .483 .252

.623 .499 .276

.157 .090 .025

.146 .097 .045

.147 .125 .067

14
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TABLE 4: Empirical Significance Levels for Three
Parameters, Averaged Over All Cases of +.5 Input Value
of Each Parameter

y Parameter
No. of
Runs

Averaged
Popu-
lation

.10 a = .05 a = .01

.01 ti 9 I .104 .053 .013

II .113 .059 .013

III .119 .058 .015

.01 A 9 I .105 .051 .010

II .106 .052 .009

III .105 .053 .009

.01 6 9 I .099 .050 .010

II .104 '.052 .011

III .106 .055 .011

.5 11 9 I .816 .715 .469

II .809 .723 '.502
III .796 .714 .526

.5 A 9 I .569 .449 .216

II .580 .453 .228

III .588 .470 .258

.5' 6 9 I .149 .085 .033
II .138 .040 .009

III .067 .035 .018

1.0 ti 9 I .849 .754 .517

II .819 .739 .534

III .811 .726 .535

1.0 A 9 I .590 .467 .231

II .607 .480 .257

III .624 .496 .285

1.0 6 9 I .143 .078 .021

II .054 .025 .012

III .068 .036 .019

1.5 ti 9 I .844 .758 .518

II .830 .748 .541

III .824 .743 .557

1.5 A 9 I .610 .478 .242

II .610 .490 .253

III .621 .505 .285

1.5 6 9 I .156 .085 .022
II .146 .067 .014

III .149 .089 .023


